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The problem arising in investigations of chlorination of polymers in
a "boiling bed™ was formulated in {1, 2]. It was found necessary to
take into consideration the trajectories of particles and to introduce
a certain special measure in the space of these trajectories, The
method of solving this problem is presented together with the results
of calculations for two separate variants.

We consider the process in which the random func-
tion describing one-dimensional particle motion in the
apparatus satisfies the equation of unsteady convective
diffusion
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with the following initial and boundary conditions:

(( 0 for x<<x,

FO, x)=
( ) {1 for x> xp

(1a)

Fit, )=0, -E ¢ m=o.
ox

The physical meaning of these equations is as fol-
lows: in the apparatus, local convective diffusion of
the solid phase takes place at every point, and the
particle displacement is determined, first, by a trans-
lation proportional to the solid-phase feed rate to the
apparatus, and, secondly, by a random translation of
a purely diffusional nature. Function F(t,x, 7,xy re-
presents the probability that a particle, which at time
7 is at point x, will be in the interval [0,x] at time t.
These are the so-called transitional probabilities of
the process. The solution is sought in the interval
[0, H], where H is the height of the apparatus. With
time measured in units of H/w; and the coordinate x
along the apparatus in units of H, the system of equa-
tions (1), (1a) becomes
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The solution of Eq. (1') with conditions (1a') is written
in series form:
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Here A = 1/2D, u = —1/4D, and By, satisfies the trans-
cedental equation
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A particle of radius R moving along trajectory x(t)
reacts with the surrounding gas containing, for example,
chlorine, which diffuses into the particle, as defined by
equation
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with initial and boundary conditions
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The diffused chlorine combines with the substance
of the particle according to the equation

Cl(r» 0) =07
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with initial condition
G {r, 0) =0. (5a)

Here the concentrations ¢y, c,, and c* are expressed
in units of c’g, r in units of R, and time t in units of
H/w,,
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To solve Egs. (4) and (5) it is necessary to know the
particle trajectory.

Let us consider one of the methods of calculating
the particle trajectory. We solve Eq. (1') with con-
ditions (1a"y and 7 = 0, x,= 0 in a sufficiently small
interval of time At, selecting a random coordinate x;
for the particle in accordance with the obtained dis-
tribution function. We thensolve Eq. (1), (la) in the
interval At with condition 7 = 0, x;= x4, and select
coordinate X,, and so on, continuing this process until
X, = 1 is obtained. The corresponding time T = pAt is
the instant when the particle leaves the apparatus. In
this manner we derive a sequence of points Xy, Xy, ...,
Xp which define the particle trajectory, We assume that
between these points the motion of the particle is uni-
form. The smaller the selected intervals At, the more
accurate the approximation to the true trajectory of the
particle. Having determined the particle trajectory
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x(t), we can solve Egs. (4) and (5). Two variants are
of interest: A) the chlorine concentration ¢*(x) in the
apparatus is maintained externally, and B) this concen-
tration is maintained at the inlet to the apparatus.

A, For simplicity's sake let us consider the case in
which ¢* = ax + b. The mass my([x], T, 7) of bound
chlorine in the particle introduced into the apparatus
at time 1, moving along trajectory x(t) up to instant
T (T is the time at which the particle leaves the ap-
paratus along the trajectory x(t)) is

1
my=4mn J‘ co(r, T)r2dr.
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The solution of Eq. (4) is of the form
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Substituting (6) into (7) and taking into account that c¢* =
= ax + b and that for t € At, x(t) is a piecewise linear
function of the form xj + ((t = tj)/At)(Xj+, — X{) we obtain
(omitting the cumbersome intermediate calculations)
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Here M = T/At. Having determined a sufficient
number of trajectories, we can obtain the distribution
of the chlorine content in the outgoing product.

B. In practice this is the more important case,
since it is difficult to sustain in the apparatus a spe-
cified concentration profile of the reactive gas.

An examination of the material balance of an ele~
ment of the apparatus volume (on condition of ideal
displacement by the gaseous phase) yields for the chlo-
rine concentration c*(x) in the gaseous phase the equa-
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Here c is the concentration of particles in the appa~-
ratus, and m(x) is the mean chlorine content (bound
and free) in a particle in section x of the apparatus.
The expression for M(x) can be derived as follows:
we denote by m([x], t,7) the mass of the bound and
the free chlorine in a particle entering the apparatus
at time 1 and moving along trajectory x(t) up to time
t. Since a stationary process is considered here, the
trajectories of particles introduced at time 74 lag with
respect to those introduced at time 1 by 7y — 7, l.e.,

m([x], Z, 1) = m([x], t—-c).

Let us now consider only those of the particles which
had entered the apparatus at time 7 < t, and which at
time t are in section y of the appratus. The average
chlorine content in such particles is

miy, t—1) = [' m ([x],
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where integration is carried out over all trajectories
of particles entering the apparatus at time 7, and such
that x(t) = y. At time t section y of the apparatus con-
tains all of the particles introduced into it up to time
t. If the feed rate of the golid phase into the apparatus
is n, and the distribution density of the r-particles in
it at time t is f(y,t — 7), then the average amount of
chlorine in particles occupying section y of the appa-
ratus at time t is

m(y, Hf(y, ) dt
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V nf{y, ©)dt
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It can be shown that in our case ¢ =
(8) becomes
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If g is the mass feed rate of the solid phase through
a unit cross section of the apparatus, then n = 3g/
/41R3y is the number of particles entering the appa-
ratus per unit of time. Selecting H, R, n, m,, H/w,,
and cf as the fundamental unit, we transform Eq. (8)
into

dc* dc — de  dm
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where Q = mon/wlca‘and D = Dy/wyH are dimensionless
complexes, and, correspondingly, Eq. (9) becomes
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Solving Eq. (9') we obtain

¢* =1+ Qm(x),



since E(O) = 0, which corresponds to the physical mean-
ing of function M(x). We assume here that m(x) = m([x],
t), where x(t) is the mean trajectory of particles, i.e.,

()= g‘l xf (x, 1)dx.
;

This assumption means in particular that the average
chlorine content in particles in section y of the appa-
ratus is equal to the chlorine content of a particle on
trajectory x(t) at that time 7 at which that particle finds
itself in section y, i.e., whenX(7) = y. We can now
write the expression for ¢*(x). Since the chlorine con-
tent in a particle on trajectory x(t) up to time t ism([x],
t), then my((x], t) and m,(x], t) ‘are, respectively, the
contents of free and bound chloride in the particle mov-
ing on trajectory x(t) up to instant of time t and are
given by
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and m = m{ + my. Substituting for c(r,t) the corre-
sponding expression (6), after lengthy calculations we

obtain
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which is an integral Volterra equation. Its solution
may be obtained by the method of successive approxi-
mations, with c*(x) expressed in terms of ¢* [3].

We have thus obtained the expression for c*(x), and
can now proceed with the calculation of m,y([x], T) for
our case. We cite certain of the estimates used in the
summation of series expansions appearing in various
formulas. Let us estimate the number of terms of
expansion (2) required for calculating F(r,xg,t,x)
with a specified accuracy.

Let R,; be the absolute value of the remainder of
expansion (2). Since (2n — 1) 7/2 <p, < 7n,

M-Fpi>pg, sinp, s <1
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Hence
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where ¢ = D(t — 7).

The number R of terms of the expansion required
for a specified accuracy of the calculation of F{r, Xy,
t,x) can be determined from the condition RN <E.

We used the following method for calculating F(r,
Xp, £, X). Function F(r,xg,t,X) is a monotonically in-
creasing one, whose derivative has for small (t — 7)
the following singularities: in the neighborhood of point
Xy, we find F' > 1, while at some distance from that
point F' < 1, Because of this F(r,x,,t,X) was calcu-
lated only in the neighborhood of point x,. Away from
point Xy F(r,x, t,X) was assumed to be equal to its
value at point x at which calculations were still possible.

The mean trajectory was calculated as the arith-
metic mean of a sufficient number of computed tra-
jectories. Estimates of other expansions were derived
in a manner similar to that used for expansion (2).
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NOTATION

c(x) is the concentration of particles in a unit of the
apparatus volume in section x; t is the time; H is the
height of the apparatus; r is the coordinate along the
radius of a particle; cy(r,t) is the concentration of free
chlorine in a particle; ¢*(x) is the chlorine concentra-
tion in the apparatus; my([x],t) is the total mass of
free chlorine in a particle; m,y([x],t) is the total mass
of bound chlorine in a particle; w, is the linear velocity
of a particle; q is the massflow rate of particles through
a unit section of the apparatus; Dy is the coefficient of
particle intermixing; w, is the gas linear velocity; D
is the coefficient of gas diffusion in a particle; my is
the amount of chlorine to be absorbed by one particle;
v is the specific weight of the polymer; k, is the con-
stant of the chemical reaction rate; c* is the concentra-
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tion of chlorine in the gas at the apparatus outlet.
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